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Courtesy of A. Saibaba

Parameters
x

Model
Ax

Data d

Inverse Problems

We are concerned with cases in which this problem isn’t ‘well behaved’.
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Regularized Inversion

In general,

x̂ = argmin
x ‖Ax− d‖22 + λ‖L(x− x0)‖22

= (ATA + λ2Q)−1(ATd + λ2Qx0),

where Q = LTL and x0 is a “default” solution.

Note:

x̂ =argmax
x k1 exp

(
−1

2
‖Ax− d‖22

)
︸ ︷︷ ︸

≡f(d|x)

k2 exp

(
−λ
2
‖L(x− x0)‖22

)
︸ ︷︷ ︸

≡π(x|λ)

Inverse problem admits Bayesian interpretation
Hoerl and Kinnard (1970), Tikhonov and Arsenin (1977), Press et al. (2007), Fox et al. (2013)
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The Bayesian Machinery

Given prior information and a data generating model, goal = update
information about the parameters of interest, given the observed data via
Bayes’ rule:

Posterior ∝ Likelihood× Prior

MAP estimator = posterior mode

argmax
x π(x | d, λ) =argmax

x f(d | x)π(x | λ)

The posterior distribution facilitates more “complete” inferences
Other point estimators (posterior mean, posterior median, etc.)

In particular, it allows quantification of uncertainty about the estimators

Berger (1985), Bernardo and Smith (1994), Robert (2007), Carlin and Louis (2009), Gelman et al. (2013), . . .
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Suppose d | x, µ ∼ N(Ax, µ−1I), x | σ ∼ N(0, σ−1Γ)

With µ and σ fixed, the posterior x | d, σ, µ ∼ N (m∗,Σ∗), where

Σ∗ =
(
µATA + σΓ−1

)−1
m∗ = Σ∗µATd

MAP = posterior mode = posterior mean

x̂ =
(
µATA + σΓ−1

)−1
µATd

≡
(
ATA + λLTL

)−1
ATd,

where λ = σ/µ and Γ−1 = LTL.

Lindley and Smith (1972)
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Hierarchical Model

d | x, µ ∼ Nm(Ax, µ−1I)

x | σ ∼ Nn(0, σ
−1Γ)

µ ∼ Ga(aµ, bµ)

σ ∼ Ga(aσ, bσ)

Full conditional distributions for Gibbs sampling:

x | σ, µ,d ∼ Nn

((
µATA + σΓ−1

)−1
µATd,

(
µATA + σΓ−1

)−1)
µ | x, σ,d ∼ Ga

(
m

2
+ aµ,

1

2
‖Ax− d‖22 + bµ

)
σ | x, µ ∼ Ga

(
n

2
+ aσ,

1

2
‖Lx‖22 + bσ

)
where LTL = Γ−1.

Geman and Geman (1984), Gelfand and Smith (1990), Gelman and Rubin (1992), Brooks and Gelman (1998), Carlin and Louis (2009)
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MCMC
Fast Approximations

Approximate Sampling from Conditional Distributions

Sampling from the full conditional of x requires(
µATA + σΓ−1

)−1/2
z, z ∼ N(0, I).

When x is high-dimensional, this is computationally expensive

For difficult conditional distributions, common to use Metropolis-Hastings
with simpler proposal distributions

Proposed alternative: Find a computationally cheap approximation, and
correct for the approximation using M-H.

Metropolis et al. (1953), Hastings (1970), Tierney (1994), Rosenthal (2011), Gelman et al. (2013)
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Note:

Σ∗ := (µATA + σLTL)−1

= L−1(µL−TATAL−1 + σI)−1L−T

When A is poorly conditioned, we expect the spectrum of L−TATAL−1

to decay quickly. I.e.,

L−TATAL−1 = VΛVT ≈ VkΛkV
T
k

L−TATAL−1 does not need to be explicitly computed so that the k
largest eigenvalues can be found relatively quickly
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Some algebra and Woodbury formula yields

L−1(µL−TATAL−1 + σI)−1L−T ≈ σ−1L−1
(
I +

µ

σ
VkΛkV

T
k

)−1
L−T

= σ−1L−1(I−VkDVT
k )L

−T

=: Σ̃

where

D = diag

(
µλj

µλj + σ

)
.

Similarly, we can factor Σ̃ = GGT with

G = σ−1/2L−1(I−VkD̃VT
k ),

where

D̃ = diag

(
1±

√
1− (D)jj

)
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Suggests a Gaussian proposal distribution with an easy-to-compute
covariance matrix and factorization

x∗ | µ, σ,d ∼ N
(
Σ̃(µATd), Σ̃

)

Idea: Inside the block-Gibbs sampler, use the cheap proposal as an
approximation to the target (full conditional) distribution of x in a Hastings
independence sampler

Fast to sample from this distribution
Fast to evaluate the likelihood function associated with this distribution
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Target density:

h(x) = exp

{
−1

2
(x− µΣATd)TΣ−1(x− µΣATd)

}
Proposal density:

q(x) = exp

{
−1

2
(x− µΣ̃ATd)T Σ̃

−1
(x− µΣ̃ATd)

}
Acceptance ratio:

h(x∗)/q(x∗)

h(x)/q(x)
= exp

{
−1

2
x∗,T

(
Σ−1 − Σ̃

−1)
x∗ +

1

2
xT
(
Σ−1 − Σ̃

−1)
x

}

≡ w(x∗)

w(x)
,

We can show that if the remaining eigenvalues from the low-rank approximation are
sufficiently small, w(x) ≈ 1⇒ very high acceptance rate
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EEG
CT

Simulated EEG Data

Model:
d = Ax + noise

d ∈ Rm represents the electrode measurements at different locations along the scalp

x ∈ Rn represents the current sources on a discretized grid in the brain

A ∈ Rm×n, m < n, is the leadfield matrix determined by conductivity and geometry
of the head

Simulate randomly-oriented dipoles located on a intracerebral source grid

Software:
German Gomez-Herrero EEG Tutorial: http:
//germangh.github.io/tutorials/dipoles/tutorial_dipoles.htm
Fieldtrip MATLAB Toolbox for EEG: http://www.fieldtriptoolbox.org

Oostendrop and Oosterom (1989), Hauk (2004)
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Here, dim(d) = 257 and dim(x) = 1261
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Figure : First 300 eigenvalues of ATA
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Figure : Solutions to the EEG inverse problem using block Gibbs (left panel),
Hastings-within-Gibbs (middle panel), and MAP (right panel)
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Efficiency

Parameter PSRF (Gibbs) PSRF (HwG)
µ 1.000 1.000
σ 1.104 1.041
x 1.571 1.577

Table : Potential scale reduction factors from Gibbs sampling and Hastings within
Gibbs sampling

Algorithm Wall Time
Block Gibbs 1979.764 s
Hastings-within-Gibbs 219.17 s

Acceptance rate for Hastings sampler = 100% for all three chains
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Simulated Computed Tomography Data

X-ray is passed through a body from a source (s = 0) to a sensor (s = S) along a line
determined by angle and distance with respect to a fixed origin

Use Shepp-Logan phantom as the true image

Target image is discretized so that dim(x) = 128× 128 = 16384

Simulate observed data (Radon transform model) over discretized lines and angles so
that dim(z) = 5000

Data generating model:
z = Ax + e,

where e ∼ N(0, µ−1I), µ−1/2 = 0.01‖Ax‖∞.

MATLAB code: http://www.math.umt.edu/bardsley/codes.html

Kaipio and Somersalo (2005), Bardsley (2011)
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Figure : First 8000 eigenvalues of ATA
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Figure : Posterior mean (left panel) and MAP estimate (right panel)
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Estimate Relative Error RMSE
MAP 0.4411 0.1081
Posterior Mean 0.4440 0.1081

Wall time for HwG sampler = 3270.35 s (< 1 hr.)

Posterior provides access to almost any estimator we want and
quantifies the associated uncertainty

Andrew Brown (ab7@g.clemson.edu) MCMC for Bayesian Inverse Problems



Introduction
Sampling Approaches

Simulated Examples
Discussion

Features of the Approach

Spectral decomposition does not require explicitly computing L−TATAL−1, but only
matrix-vector products.

Forming A itself is often challenging.

Finding the eigenvalues is a precomputation before iterating. Once found, the proposal
is cheap for any given µ and σ.

For ill-posed problems, the acceptance probability is close to one.
Can accept every proposed draw as an approximation to avoid evaluating the likelihood.

We are still modeling the full dimension of x, not projecting onto a lower-dimensional
subspace.

Exploiting the nature of the forward model

This approach allows incorporation of strong or vague prior information about the
solution through specification of the prior covariance (precision) matrix

Prior information determined from fMRI can help to solve the EEG problem
Prior smoothness assumptions through a GP prior or Laplacian

Dale et al. (2000), Banerjee et al. (2008), Higdon et al. (2008), Banerjee et al. (2012)
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Thoughts About Future Directions

Application to real data

Approximations based on Krylov spaces
Covariance factorization is not necessary in this case

Allow estimation of hyperparameters in the prior covariance
Prior distributions on matrices with special structure
Parameters estimated via, e.g., empirical Bayes and kept fixed

Exploration of other penalties in the prior
Many types of regression penalties (“shrinkage priors”) can be expressed as scale
mixtures of Normal distributions

Incorporation into MCMC algorithms with very computationally intense forward models
E.g., delayed acceptance algorithms.

Christen and Fox (2005), Park and Casella (2008), Qian and Wu (2008), Polson and Scott (2010), Parker and Fox (2012), Fox et al. (2013)
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Thank you!
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