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Introduction

Courtesy of A. Saibaba

Inverse Problems

Parameters
X

We are concerned with cases in which this problem isn’t ‘well behaved'.
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Introduction

Regularized Inversion

@ In general,

ER | Ax — df3 + Al|L(x — xo) 3

M

= (ATA +22Q) " H(ATd + \2Qx),

where Q = LTL and xg is a “default” solution.

@ Note:
& _argmax 1 2 A 2
x =81 kb exp —§\|Ax—d||2 ko exp —§HL(X—X0)H2
=f(d|x) =r(x})

@ Inverse problem admits Bayesian interpretation

Hoerl and Kinnard (1970), Tikhonov and Arsenin (1977), Press et al. (2007), Fox et al. (2013)
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Introduction

The Bayesian Machinery

@ Given prior information and a data generating model, goal = update
information about the parameters of interest, given the observed data via
Bayes’ rule:

Posterior o Likelihood x Prior

@ MAP estimator = posterior mode
e (x| A, A) =ME f(A [ )7 (x | A)

@ The posterior distribution facilitates more “complete” inferences
o Other point estimators (posterior mean, posterior median, etc.)

@ In particular, it allows quantification of uncertainty about the estimators

Berger (1985), Bernardo and Smith (1994), Robert (2007), Carlin and Louis (2009), Gelman et al. (2013), . . .
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Introduction

@ Supposed | %, ~ N(Ax, " 'T), x| o~ N(0,07'T)
o With p and o fixed, the posterior x | d, o, u ~ N (m*, %), where

¥ = (uATA 40T 1)
m* = X'uATd

@ MAP = posterior mode = posterior mean

% = (uATA+oT ) pATd
(ATA +)\L7L) " ATd,

where A = o/pand T~ = LTL.

Lindley and Smith (1972)
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Introduction

Hierarchical Model

d | X, e~ Nm(AX7 /‘711)
x| o~ N,(0,07'T)
p ~ Ga(ay, by)
o ~ Ga(ag, by)

o Full conditional distributions for Gibbs sampling:
x|o,ud~ N, ((,uATA + al"_l)71 pATd, (/,LATA + ar_l)il)
m 1
plxiod~Ga (' +an GIAx—dlf+1,)

n 1
5o Ga (4 a0, LI+ )

where LTL = 1.

Geman and Geman (1984), Gelfand and Smith (1990), Gelman and Rubin (1992), Brooks and Gelman (1998), Carlin and Louis (2009)
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Sampling Approaches MCMC
Fast Approximations

Approximate Sampling from Conditional Distributions

@ Sampling from the full conditional of x requires
(LATA + 01-\—1)—1/2 z, z~ N(0,I).

@ When x is high-dimensional, this is computationally expensive

@ For difficult conditional distributions, common to use Metropolis-Hastings
with simpler proposal distributions

@ Proposed alternative: Find a computationally cheap approximation, and
correct for the approximation using M-H.

Metropolis et al. (1953), Hastings (1970), Tierney (1994), Rosenthal (2011), Gelman et al. (2013)
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Sampling Approaches MCMC

Fast Approximations

@ Note:

¥ = (WATA+oL'L)™!
= L '(uL TATAL ' +oD) 'L77

@ When A is poorly conditioned, we expect the spectrum of L7 AT AL™!
to decay quickly. l.e.,

L TATAL™ = VAVT = VA, V]

o L TATAL™! does not need to be explicitly computed so that the k
largest eigenvalues can be found relatively quickly
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Sampling Approaches MCMC

Fast Approximations

@ Some algebra and Woodbury formula yields

Q

—1
L (UL TATAL! + o) 'L~T s (I n ﬁVkAkV{) LT
g

= o 'L'1-Vv,DVHL T

= X

. HA;
D = dia .
9 <M)\j + 0)

o Similarly, we can factor £ = GG with

where

G=0c L7 1-V,DV}),

where
D = diag (1 +4/1- (D)jj)
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Sampling Approaches MCMC

Fast Approximations

@ Suggests a Gaussian proposal distribution with an easy-to-compute
covariance matrix and factorization

x* | p,o0d ~ N (f](uATd),f])

@ Idea: Inside the block-Gibbs sampler, use the cheap proposal as an
approximation to the target (full conditional) distribution of x in a Hastings
independence sampler

o Fast to sample from this distribution
o Fast to evaluate the likelihood function associated with this distribution
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Sampling Approaches MCMC

Fast Approximations

o Target density:

h(x) = exp {—%(x —pEAT)) TS (x - /LEATd)}
@ Proposal density:

q(x) = exp {—%(x - uf]ATd)TfJ_l(x — ,ufJATd)}

@ Acceptance ratio:

_ wx)
ow(x)’

@ We can show that if the remaining eigenvalues from the low-rank approximation are
sufficiently small, w(x) ~ 1 = very high acceptance rate
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Simulated Examples

Simulated EEG Data

o Model:
d = Ax + noise

o d € R represents the electrode measurements at different locations along the scalp
o x € R” represents the current sources on a discretized grid in the brain

o A € R™*™ m < n, is the leadfield matrix determined by conductivity and geometry
of the head

Simulate randomly-oriented dipoles located on a intracerebral source grid

o Software:

o German Gomez-Herrero EEG Tutorial: http:
//germangh.github.io/tutorials/dipoles/tutorial_dipoles.htm
o Fieldtrip MATLAB Toolbox for EEG: http://www.fieldtriptoolbox.org

Oostendrop and Oosterom (1989), Hauk (2004)

Andrew Brown (ab7@g.clemson.edu) MCMC for Bayesian Inverse Problems


http://germangh.github.io/tutorials/dipoles/tutorial_dipoles.htm
http://germangh.github.io/tutorials/dipoles/tutorial_dipoles.htm
http://www.fieldtriptoolbox.org

Simulated Examples
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Simulated Examples

Here, dim(d) = 257 and dim(x) = 1261
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Figure : First 300 eigenvalues of AT A
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Simulated Examples

Figure : Solutions to the EEG inverse problem using block Gibbs (left panel),
Hastings-within-Gibbs (middle panel), and MAP (right panel)
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EEG
Simulated Examples CT

Efficiency

Parameter | PSRF (Gibbs) PSRF (HwWG)

W 1.000 1.000
o 1.104 1.041
X 1.571 1.577

Table : Potential scale reduction factors from Gibbs sampling and Hastings within
Gibbs sampling

Algorithm | Wall Time
Block Gibbs 1979.764 s
Hastings-within-Gibbs | 219.17 s

@ Acceptance rate for Hastings sampler = 100% for all three chains
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EEG
Simulated Examples CT

Simulated Computed Tomography Data

o X-ray is passed through a body from a source (s = 0) to a sensor (s = S) along a line
determined by angle and distance with respect to a fixed origin

@ Use Shepp-Logan phantom as the true image
o Target image is discretized so that dim(x) = 128 x 128 = 16384

@ Simulate observed data (Radon transform model) over discretized lines and angles so
that dim(z) = 5000

o Data generating model:
z=Ax+e,

where e ~ N (0, = 'T), p= /% = 0.01]| A o

o MATLAB code: http://www.math.umt.edu/bardsley/codes.html

Kaipio and Somersalo (2005), Bardsley (2011)
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EEG

Simulated Examples CT
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Figure : First 8000 eigenvalues of AT A
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Figure : Posterior mean (left panel) and MAP estimate (right panel)
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EEG

Simulated Examples CT

Estimate | Relative Error  RMSE
MAP 0.4411 0.1081
Posterior Mean 0.4440 0.1081

o Wall time for HwG sampler = 3270.35 s (< 1 hr.)

@ Posterior provides access to almost any estimator we want and
quantifies the associated uncertainty
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Discussion

Features of the Approach

o Spectral decomposition does not require explicitly computing L7 AT AL ™!, but only
matrix-vector products.

o Forming A itself is often challenging.

o Finding the eigenvalues is a precomputation before iterating. Once found, the proposal
is cheap for any given i and o.

o For ill-posed problems, the acceptance probability is close to one.
o Can accept every proposed draw as an approximation to avoid evaluating the likelihood.

@ We are still modeling the full dimension of x, not projecting onto a lower-dimensional
subspace.
o Exploiting the nature of the forward model

o This approach allows incorporation of strong or vague prior information about the
solution through specification of the prior covariance (precision) matrix
o Prior information determined from fMRI can help to solve the EEG problem
o Prior smoothness assumptions through a GP prior or Laplacian

Dale et al. (2000), Banerjee et al. (2008), Higdon et al. (2008), Banerjee et al. (2012)
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Discussion

Thoughts About Future Directions

@ Application to real data

@ Approximations based on Krylov spaces
o Covariance factorization is not necessary in this case

@ Allow estimation of hyperparameters in the prior covariance

o Prior distributions on matrices with special structure
o Parameters estimated via, e.g., empirical Bayes and kept fixed

o Exploration of other penalties in the prior
o Many types of regression penalties (“shrinkage priors”) can be expressed as scale

mixtures of Normal distributions

@ Incorporation into MCMC algorithms with very computationally intense forward models
o E.g., delayed acceptance algorithms.

Christen and Fox (2005), Park and Casella (2008), Qian and Wu (2008), Polson and Scott (2010), Parker and Fox (2012), Fox et al. (2013)
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Thank you!
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